Volume 2, Issue 2, March 2014, Page: 20-26
Phylogenetic and Morphological Investigation of a Dunaliella Strain Isolated from Yuncheng Salt Lake, China
Feipeng Wang, School of Life Science, Shanxi University, Taiyuan 030006, China
Jia Feng, School of Life Science, Shanxi University, Taiyuan 030006, China
Shulian Xie, School of Life Science, Shanxi University, Taiyuan 030006, China
Received: Apr. 5, 2014;       Accepted: Apr. 24, 2014;       Published: Apr. 30, 2014
DOI: 10.11648/j.plant.20140202.12      View  2560      Downloads  157
Abstract
A Dunaliella strain was isolated from Yuncheng Salt Lake, Shanxi, China (111.05°E, 35.03°N). Morphological characteristics and molecular data were used to evaluate the relationship of this algal strain to other Dunaliella strains. Morphology of the isolated strain observed was close to Dunaliella salina. Phylogenetic trees were constructed from rbcL, psaB, ITS (ITS-1+5.8S rDNA+ITS-2) and 18S rDNA sequence data. Phylogenetic analysis of the four gene sequences revealed that the isolated Dunaliella strain is closely related to D. salina (Dunal) Teodoresco, D. peircei Nicolai et Baas-Becking, D. tertiolecta Butcher and more likely closer to D. salina. Combined morphological characteristics and phylogenetic analysis, the isolated Duanliella—designated here as D. sp YC01—should be a Dunalialla salina strain.
Keywords
Dunaliella, Morphology, Phylogeny
To cite this article
Feipeng Wang, Jia Feng, Shulian Xie, Phylogenetic and Morphological Investigation of a Dunaliella Strain Isolated from Yuncheng Salt Lake, China, Plant. Vol. 2, No. 2, 2014, pp. 20-26. doi: 10.11648/j.plant.20140202.12
Reference
[1]
Ben-Amotz A. 1980. Glycerol production in the alga Dunaliella. In: Biochemical and Photosynthetic Aspects of Energy Production (Ed.). A. San Pietro. Academic Press, New York, pp. 191-208.
[2]
Liska A. J., Shevchenko A., Pick U. and Katz A. 2004. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-base proteomics. Plant Physiol. 136 (1): 2806-2817.
[3]
Kannan P. R., Divya S., Rengasamy R., Jayappriyan, K. R. and Rajkumar, R. 2010. Significance of 18S rDNA specific primers in the identification of genus Dunaliella. J. Exp. Sci. 1 (1): 27-31.
[4]
Chen H. and Jiang J. G. 2009. Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol. 219 (2): 251-258.
[5]
Oren A. 2005. A hundred years of Dunaliella research: 1905–2005. Saline Systems. 1 (2): 1-14.
[6]
Ben-Amotz A., Katz A. and Avron M. 1982. Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from Dunaliella bardawil. J. Phycol. 18: 529-537.
[7]
von Lintig J., Hessel S., Isken A., Kiefer C., Lampert J. M., Voolstra O. and Vogt K. 2005. Towards a better understanding of carotenoid metabolism in animals. Bba-Mol. Basis. Dis. 1740 (2): 122-131.
[8]
Mercedes, Moreno J., Manzano J. C., Florencio J. and Guerrero M. 2005. Production of Dunaliella salina biomass rich in 9-cis-@b-carotene and lutein in a closed tubular photobioreactor. J. Biotechnol. 115 (1): 10, http://dx.doi.org/10.1016/j.jbiotec.2004.07.010.
[9]
Teodores E. C. 1905. Organisation et développement du Dunaliella, nouveau genre de Volvocacée-Polyblépharidé. Beih. z. Bot. Zentr. 18 (Abt. 1): 215-232.
[10]
Lerche W. 1937. Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Archiv. f. Protist. 88: 236-269.
[11]
Buther R. W. 1959a. An introductory account of the smaller algae of British coastal waters. Part I. Introduction and Chorophyceae. Ministry of Agriculture, Fisheries and Food, Great Britain, Fisheries. Investigations Series IV, pp, 1-74.
[12]
Buther R.W. 1959b. An introductory account of the smaller algae of British coastal waters. Hydrobiologia. 12: 249-250.
[13]
Msassyuk N. P. 1973a. New taxa of the genus Dunaliella Teod. I. Ukr. Bot. Zh., pp. 30: 175.
[14]
Msassyuk N. P. 1973b. New taxa of the genus Dunaliella Teod. II. Ukr. Bot. Zh., pp. 30: 345.
[15]
Msassyuk N. P. 1973c. Morphology, taxonomy, ecology and geographic distribution of the genus Dunaliella Teod and prospects for its potential utilization. Naukova Dumka, Kiev, pp. 242.
[16]
Azúa-Bustos A., González-Silva C., Salas L., Palma R. E. and Vicuña. 2010. A novel subaerial Dunaliella species growing on cave spiderwebs in the Atacama Desert. Extremophiles. 14 (5): 443-452.
[17]
Preisig H. R. 1992. Morphology and taxonomy. In: Dunaliella: physiology, biochemistry, and biotechnology. Avron M. and A. Ben-Amotz (Eds). Boca Raton, CRC Press, pp. 1-15.
[18]
Hejazi M. A., Barzegari A., Gharajeh N. H. and Hejazi M. S. 2010. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella. Saline Systems. 6: 4, http://dx.doi.org/10.1186/1746-1448-6-4.
[19]
Zamani H., Moradshahi A. and Karbalaei-Heidari H. R. 2011. Characterization of a new Dunaliella salina strain MSI-1 based on nuclear rDNA ITS sequences and its physiological response to changes in composition of growth media. Hydrobiologia. 658 (1): 67-75.
[20]
Li Z. and Xie S. L. 2006. Study on species and distribution of algae in salt lakes area in Yuncheng, Shanxi Province. J. Lake. Sci. 18 (2): 189-192.
[21]
Sharma P., Agarwal V., Mohan M. K. Kachhwaha S. and Konthari S. L. 2012. Isolation and characterization of Dunaliella species from Sambhar Lake (India) and its phylogenetic position in the genus Dunaliella using 18S rDNA. Natl. Acad. Sci. Lett. 35 (3): 207-213.
[22]
Doyle J. J. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
[23]
Olmos J., Paniagua J. and Contreras R. 2000. Molecular identification of Dunaliella sp. utilizing the18S rDNA gene. Lett. Appl. Microbiol. 30 (1): 80-84.
[24]
Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., Lopez R., Thompson J. D., Gibson T. J. and Higgins D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23 (21): 2947-2948.
[25]
Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, 888 evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 (10): 2731-2739.
[26]
Guindon S. and Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biol. 52 (5): 696-704.
[27]
Ronquist F. and Huelsenbeck J. P. 2003. MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics. 19 (12): 1572-1574.
[28]
Posada D. 2008. jModel test: phylogenetic model averaging. Mol. Biol. Evol. 25: 1253-1256.
[29]
Assunção P., Jaén-Molina R., Caujapé-Castells J., Jara A. D. L., Carmona L., Freijanes K. and Mendoza H. 2012. Phylogenetic position of Dunaliella acidophila (Chlorophyceae) based on ITS and rbcL sequences. J. Appl. Phycol. 24 (4): 635-639.
[30]
Hepperle D., Nozaki H., Hohenberger S. Huss V.A. Morita E. and Krienitz L. 1998. Phylogenetic position of the Phacotaceae within the Chlamydophyceaeas revealed by analysis of 18S rDNA and rbcL sequences. J. Mol. Evol. 47: 420-430.
[31]
Nakada T., Misawa K. and Nozaki H. 2008. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 48 (1): 281-291.
Browse journals by subject